2,075 research outputs found

    Understanding the coach-coachee-client relationship: a conceptual framework for executive coaching

    Get PDF
    Objectives: There is a need for a more comprehensive understanding of how coaching processes psychologically operate. This paper presents the findings from a study aimed to characterise the coaching process experience and to identify how specific experiences contribute to coaching outcomes. Design: A qualitative design was adopted. Data was analysed by Interpretative Phenomenological Analysis (Smith, 2008). Method: Data was collected from 10 participants, this included coaches (N = 4), coachees (N = 5) and one commissioner, three times along the coaching process. A total of 30 interviews were undertaken. Findings: Coaching outcomes can be generated by three essential mechanisms: Projection of Future Self; Perspectivation of Present Self; and Confirmation of Past/Present Self. Each mechanism’s name represents a particular effect on coachee’s self and may evolve diverse coaching behaviours. Although they all can be actively managed to generate sustainability of outcomes, each mechanism tends to contribute differently to that sustainability. Conclusion: The study provides a comprehensive understanding of the different methodological and experiential ingredients of the coaching process and its implications. While most coaching research is focused on identifying coaching results based on a retrospective analysis, this is one of the first studies accompanying longitudinally the coaching process and capturing an integrative understanding of its dynamics. Moreover, the study provides evidence of how coaching can differently deliver sustainable outcomes and be used as a valuable developmental tool in organisations. The study contributes to our understanding of theory building and raises questions for further research on the uniqueness of coaching interventions

    Reducing the network load of replicated data

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 53-54).by Jonathan R. Santos.S.B.and M.Eng

    Optical and Polarity Control of Donor–Acceptor Conformation and Their Charge-Transfer States in Thermally Activated Delayed-Fluorescence Molecules

    Get PDF
    This study reports two novel D–A–D molecules, 2,7-bis(phenothiazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPT-TXO2) and 2,7-bis(1-methylphenothiazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DMePT-TXO2), where the latter differs by only a methyl group incorporated on each of the donor units. DMePT-TXO2 in solution and in solid state shows dual charge-transfer (CT) emission. The CT states come from two distinctive conformations between the D and A units. Experiments show that the emission contribution of each state can be controlled by the polarity of the environment and by the excitation energy. Also, how the different conformers can be used to control the TADF mechanism is analyzed in detail. These results are important as they give a more in-depth understanding about the relation between molecular conformation and the TADF mechanism, thereby facilitating the design of new TADF molecules

    Comparative study of methodologies to compute the intrinsic Gilbert damping: interrelations, validity and physical consequences

    Full text link
    Relaxation effects are of primary importance in the description of magnetic excitations, leading to a myriad of methods addressing the phenomenological damping parameters. In this work, we consider several well-established forms of calculating the intrinsic Gilbert damping within a unified theoretical framework, mapping out their connections and the approximations required to derive each formula. This scheme enables a direct comparison of the different methods on the same footing and a consistent evaluation of their range of validity. Most methods lead to very similar results for the bulk ferromagnets Fe, Co and Ni, due to the low spin-orbit interaction strength and the absence of the spin pumping mechanism. The effects of inhomogeneities, temperature and other sources of finite electronic lifetime are often accounted for by an empirical broadening of the electronic energy levels. We show that the contribution to the damping introduced by this broadening is additive, and so can be extracted by comparing the results of the calculations performed with and without spin-orbit interaction. Starting from simulated ferromagnetic resonance spectra based on the underlying electronic structure, we unambiguously demonstrate that the damping parameter obtained within the constant broadening approximation diverges for three-dimensional bulk magnets in the clean limit, while it remains finite for monolayers. Our work puts into perspective the several methods available to describe and compute the Gilbert damping, building a solid foundation for future investigations of magnetic relaxation effects in any kind of material.Comment: 16 pages, 5 figure

    HUMAN-CENTERED DESIGN OF THE HUMAN-SYSTEM INTERFACES OF MEDICAL EQUIPMENT: THYROID UPTAKE SYSTEM

    Get PDF
    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human–system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system

    A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL

    Get PDF
    Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases

    Rheology of enzyme liquefied corn stover slurries: The effect of solids concentration on yielding and flow behavior

    Get PDF
    The measurement of yield stress and shear thinning flow behavior of slurries formed from unpretreated corn stover at solids loadings of 100–300 g/L provides a key metric for the ability to move, pump, and mix this lignocellulosic slurry, particularly since corn stover slurries represent a major potential feedstock for biorefineries. This study compared static yield stress values and flow hysteresis of corn stover slurries of 100, 150, 200, 250, and 300 g/L, after these slurries were formed by adding pellets to a cellulase enzyme solution (Celluclast 1.5 L) in a fed-batch manner. A rotational rheometer was used to quantitate relative yield stress and its dependence on processing history at insoluble solids concentrations of 4%–21% (wt/vol). Key findings confirmed previous observations that yield stress increases with solids loadings and reaches ~3000 Pa at 25% (wt/vol) solids concentration compared to ~200 Pa after enzyme liquefaction. While optimization of slurry forming (i.e., liquefaction) conditions remains to be done, metrics for quantifying liquefaction extent are needed. The method for obtaining comparative metrics is demonstrated here and shows that the yield stress, shear thinning and shear thickening flow behaviors of enzyme liquefied corn stover slurries can be analyzed using a wide-gap rheometry setup with relative measuring geometries to mimic the conditions that may exist in a mixing vessel of a bioreactor while applying controlled and precise levels of strain

    Fine‐Tuning the Photophysics of Donor‐Acceptor (D‐A 3 ) Thermally Activated Delayed Fluorescence Emitters Using Isomerisation

    Get PDF
    Here two D–A3 regioisomers, comprising three dibenzothiophene-S,S-dioxide acceptor units attached to a central triazatruxene core, are studied. Both molecules show thermally activated delayed fluorescence (TADF), however, the efficiency of the TADF mechanism is strongly affected by the D–A substitution position. The meta- substituted emitter (1 b) shows a slightly higher-lying singlet charge transfer state and a lower-lying triplet state than that observed in the para- substituted emitter (1 a), resulting in a larger singlet–triplet splitting (ΔEST) of 0.28 eV compared to only 0.01 eV found in 1 a. As expected, this ΔEST difference strongly impacts the reverse intersystem crossing (rISC) rates and the para- isomer 1 a exhibits a much faster delayed fluorescence emission. Calculations show that the triplet energy difference between the two isomers is due to steric hindrance variances along the donor–acceptor rotation axis in these molecules: as 1 b is less restricted, rotation of its acceptor unit leads to a lower T1 energy, further away from the region of high density of states (the region where larger vibronic coupling is found, favouring rISC). Therefore, our results show how the substitution pattern has a marked effect on triplet state energies and character, verifying the key structural designs for highly efficient TADF materials
    corecore